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A nonlinear relaxation process is considered for a macroscopic thermodynamic quantity, generalizing recent
work by Taniguchi and Cohen �J. Stat. Phys. 126, 1 �2006�� that was based on the Onsager-Machlup theory. It
is found that the fluctuation theorem holds in the nonlinear nonequilibrium regime if the change of entropy
characterized by local equilibria is appropriately renormalized. The fluctuation theorem for the ordinary en-
tropy change is recovered in the linear near-equilibrium case.
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I. INTRODUCTION

Thermodynamics is concerned with the averages of mac-
roscopic physical quantities, whereas equilibrium statistical
mechanics can give information on fluctuations around the
averages. Einstein’s 1910 theory of fluctuations �1,2� builds a
bridge between the two based on the thermodynamic entropy
and the reversal of Boltzmann’s relation for it. In nonequi-
librium, fluctuations are considered to play a vital role and
may cause a richer variety of phenomena than those in equi-
librium. In spite of a lot of effort, it seems fair to say that for
a long time simple and complete laws could not be found for
describing universal physical properties of fluctuations in
system states far from equilibrium. However, the situation
changed when the so-called fluctuation theorem was formu-
lated in the middle of the 1990s �3,4�.

The fluctuation theorem reveals a kind of symmetry hid-
den behind the distributions of the entropy change, quantity
of heat, work, and so on in nonequilibrium situations. It
holds for stochastic systems �5,6� as well as deterministic
chaos �4�. Also, several real experiments have been per-
formed, and good agreement of the predictions of the theo-
rem with the experimental results has been reported �7–9�.

In a recent work �10�, the fluctuation theorem was red-
erived by making use of the Onsager-Machlup theory �11�, in
which the existence of local equilibria and linearity of relax-
ation process are essential premises. Discussions of this kind
are of obvious importance, since a macroscopic theory �i.e.,
thermodynamics� plays a guiding role for consistently devel-
oping a microscopic approach �i.e., statistical mechanics�.
The authors of Ref. �10� apply a constant external dragging
force and consider the fluctuations of work, friction, and
quantity of heat. A problem of crucial importance here is that
the linear approximation is not legitimate in the strongly
nonequilibrium regime. Accordingly, the external force can-
not be very strong either.

In this paper, we generalize the discussion in Ref. �10� to
a nonlinear case and show that the transient fluctuation theo-
rem still holds if the change of the entropy characterized by
local equilibria is appropriately modified. This modified
quantity is referred to as the “renormalized entropy change.”
We illustrate the result using a simple analytical example.

II. NONLINEAR NONEQUILIBRIUM PROCESS:
GENERALIZATION OF THE ONSAGER-MACHLUP

THEORY

To be self-contained, this section is devoted to the prepa-
ration for our main discussion in Sec. III. Suppose that the
total system consists of the object system and the surround-
ing environment and is initially not in equilibrium. Consider
the evolution of a macroscopic physical quantity of the ob-
ject system, the energy � here, along a process from a given
arbitrary initial state to a certain nonequilibrium stationary
state. We formulate the dynamics of � by employing the
Langevin equation

d�

dt
= F��� + � . �1�

Here, F��� is a current and � is Gaussian white noise satis-
fying

��t� = 0, ��t���t�� = 2D��t − t�� , �2�

where the overbars stand for averages over the noise distri-
bution and D is the diffusion constant.

Onsager and Machlup �11� assume the initial state of the
object system to be close to equilibrium and discuss its re-
laxation to equilibrium. Accordingly, they are able to express
the current in terms of the thermodynamic force,
dStot��� /d�, as F���=L dStot��� /d�, where Stot��� and L
are the total entropy and the transport coefficient, respec-
tively. Since the total system is in a state near equilibrium, its
entropy can be well approximated by a quadratic function
�1,2�, Stot���=const− �1 /2���2 with ��0 �here, �0 yielding
Stot��0�=max is taken to be zero for the sake of simplicity�.
Accordingly, the distribution of fluctuations, �, is Gaussian,
�����	exp�Stot�����exp�−�1 /2���2� �Boltzmann’s con-
stant being set equal to unity�, and the Langevin equation in
Eq. �1� becomes linear. To realize a nonequilibrium station-
ary state, the authors of Ref. �10� introduce a constant exter-
nal dragging force.

A point here is that if the entropy is a quadratic function
and the external force is not applied, then the physics is well
determined in the neighborhood of �=�0�=0�. However, for
a far-from-equilibrium system exhibiting slow relaxation, the
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entropy is not quadratic and may have a complex landscape
with a number of local maxima, in general. Therefore, in
such cases, the state of the system can still be characterized
around local maxima even without external dragging forces.
Thus, we renounce the linearities of both the current and the
thermodynamic force with respect to � and do not apply
external dragging forces.

To find one such nonequilibrium stationary state, we con-
sider the following Fokker-Planck equation for the probabil-
ity distribution ��� , t�=�(�−���t�):

����,t�
�t

= −
�

��
�F������,t�� + D

�2���,t�
��2 , �3�

where ���t� is the solution of Eq. �1�. A stationary solution of
this equation is given by

�S��� 	 e
���, �4�

where 
��� is connected to F��� as follows:

F��� = D
d
���

d�
. �5�

Later, we shall see how 
��� is related to the renormalized
entropy change.

Take a time interval �0,�� and impose the conditions
��0�=X and ����=Y. The forward transition probability
from X to Y is given by the following functional integral
�12,13�:

fF�Y,��X,0� = N� D��
��0�=X

����=Y

D� ��� − ���

�exp�−
1

4D
� dt �2�t�	

= N�
��0�=X

����=Y

D� Det
� d

dt
−

dF���
d�

	��t − t���
� exp
−

1

4D
�

0

�

dt�d�

dt
−

dF���
d�

	2� , �6�

where the subscript F denotes the forward process �6�, N is a
normalization factor that will commonly be used throughout
this paper, ���−����t�(��t�−���t�), and the functional
determinant is defined for the continuous indices t and t�.

To evaluate the determinant, we employ the standard ma-
nipulation �13� Det M =exp�Tr ln M�, where

M�t,t�� � � d

dt
−

dF���
d�

	��t − t�� . �7�

Write the matrix as follows:

M�t,t�� = � d

dt
	K�t,t�� , �8�

K�t,t�� = ��t − t�� − �t − t��
dF„��t��…

d��t��
, �9�

where �x� is the Heaviside step function. Notice that we are
using the “forward propagator” �t− t�� in Eq. �9�. Absorbing

exp�Tr ln�d /dt�� in the normalization factor and expanding
the logarithm, we have

ln�Det K� = − �0��
0

�

dt
dF���

d�
−

1

2
�

0

�

dt1�
0

�

dt2�t1 − t2�

��t2 − t1�
dF„��t1�…

d��t1�
dF„��t2�…

d��t2�
− ¯ . �10�

In this series, only the first term survives because the inte-
grals including the products of the step functions vanish.
Setting �0�=1 /2, we obtain

Det M 	 exp�−
1

2
�

0

�

dt
dF���

d� 	 . �11�

Consequently, the forward transition probability is expressed
as follows:

fF�Y,��X,0� = N�
��0�=X

����=Y

D� exp�− �
0

�

dt L	 , �12�

where

L =
1

4D
�d�

dt
− F���	2

+
1

2

dF���
d�

�13�

is the “thermodynamic Lagrangian.” The second term on the
right-hand side highlights an effect of the nonlinearity.

III. FLUCTUATION THEOREM FOR THE
RENORMALIZED ENTROPY CHANGE

With the preparation in the preceding section, now we are
in a position to discuss a transient fluctuation theorem in a
process from a given arbitrary initial state ��X ,0� to the non-
equilibrium stationary state, i.e., �S��� in Eq. �4�. To find a
relevant physical quantity, first we consider the time-reversal
operation t=−t̃. � is assumed to transform as a scalar vari-
able: ��t�= �̃�t̃�. Under this operation, the thermodynamic
Lagrangian transforms as

L„��t�,d��t�/dt… = L„�̃�t̃�,d�̃�t̃�/dt̃… +
1

D
F„�̃�t̃�…

d�̃�t̃�

dt̃
.

�14�

Quite remarkably, the second term on the right-hand side is
the t̃ derivative of 
(�̃�t̃�) with 
 appearing in Eq. �5�. That
is,

L„��t�,d��t�/dt… = L„�̃�t̃�,d�̃�t̃�/dt̃… +
d
„�̃�t̃�…

dt̃
. �15�

Accordingly, the transition probability changes as follows:

fF�Y,��X,0� = Ne
�Y�−
�X��
�̃�0�=X

�̃�−��=Y
D�̃

�exp�− �
−�

0

dt̃ L„�̃�t̃�,d�̃�t̃�/dt̃…	 . �16�

Making the shift t̂= t̃+� and noticing that �̃�t̃�= �̂�t̂� as well
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as the invariance of the functional integral part under time
translation, we obtain

fF�Y,��X,0��S�X� = fF�X,��Y,0��S�Y� , �17�

where �S is the nonequilibrium stationary state in Eq. �4�.
Thus, in the present nonlinear nonequilibrium system, the
detailed balance condition, which is regarded as a remnant of
microscopic reversibility, holds �14�. Notice, however, that
the quantities treated here are the macroscopic thermody-
namic variables.

It is also noticed that, if the total derivative term is not
extracted in Eq. �14�, one obtains the reverse transition prob-
ability fR�X ,� �Y ,0�, which is related to the forward transi-
tion probability as follows:

fF�Y,��X,0� = fR�X,��Y,0�

= N�
�̂���=X

�̂�0�=Y
D�̂ exp�− �

0

�

dt̂ L̂	 , �18�

where

L̂ =
1

4D
�−

d�̂

dt̂
− F��̂�	2

+
1

2

dF��̂�

d�̂
. �19�

Now, the proof of the fluctuation theorem is straightfor-
ward. The quantity to be considered is 
���, as suggested by
the structure in Eq. �17�. So let us evaluate in the following
way the probability that the amount of its change along a
process from a given arbitrary initial state ��X ,0� to a non-
equilibrium stationary state �S��� during the time interval
�0,�� is �
:

PF��
� =����
 − �
0

�

dt
d
���

dt 	�
F

�� � dX dY �„�


− �
�Y� − 
�X��…fF�Y,��X,0���X,0� . �20�

From the detailed balance condition in Eq. �17�, we have

PF��
� = e�
� � dX dY �„�


− �
�Y� − 
�X��…fF�X,��Y,0���X,0� . �21�

Interchanging the integration variables X and Y and using
Eq. �18�, we find

PF��
� = e�
� � dX dY �„− �
 − �
�Y� − 
�X��…

�fF�Y,��X,0���Y,0�

= e�
� � dX dY �„− �
 − �
�Y�

− 
�X��…fR�X,��Y,0���Y,0�

= e�
���− �
 − �
0

�

dt
d
„��t�…

dt 	�
R

= e�
PR�− �
� , �22�

where the subscript R indicates the reverse process �6�.
Therefore, we obtain

PF��
�
PR�− �
�

= e�
, �23�

which is the main result of the present work.
A remaining task is to elucidate the physical meaning of

the quantity �
. Clearly, it is not the change of the ordinary
entropy Stot��� defined by local equilibria. From Eq. �5�, we
find that

d
���
dt

=
1

D
F���

d�

dt
=

1

D

����
�

dStot���
dt

, �24�

where �����F���, in which � is solved in terms of the
affinity �15� defined by

� =
dStot���

d�
. �25�

If the total entropy is given by the sum of the entropies of the
object and environmental systems, then � is given by the
difference between the inverse temperatures of these sub-
systems. Equation �24� gives a basis for calling �
 the
renormalized entropy change.

In a particular case when the total system is in a state near
equilibrium, the linear approximation is well valid: that is,
����=L� with the transport coefficient L satisfying the
fluctuation-dissipation theorem, D=L. Then Eq. �23� be-
comes reduced to the transient fluctuation theorem for the
entropy change, which is known in the literature �see Ref.
�16�, for example�.

Finally, we wish to illustrate the above result using a
simple example. As mentioned above, the case near equilib-
rium is characterized by the relation ����=D�, whereas, in a
state far from equilibrium having a large value of �, ���� is
nonlinear in �. This quantity, ����, may be determined ex-
perimentally by observing the pattern of relaxation of � with
respect to the temperature difference. On the other hand,
given a system, the functional form of Stot��� is also speci-
fied. Therefore, the current appearing in the Langevin equa-
tion in Eq. �1� is determined by the condition ����=F���
with Eq. �25�. So let us discuss a simple �but nontrivial�
case when the entropy has the following form: Stot���
=const−�4�4+�3�3−�2�2, where the �’s are positive con-
stants. Setting �4=a /4, �3=a�b+c� /3, �2=abc /2, and as-
suming that 0�b�c and c�2b, we see that Stot��� has a
global maximum at �=0, a local maximum at �=c, and a
local minimum at �=b. This nonconcavity in Stot��� indi-
cates the existence of phase transitions. The state of the sys-
tem around the local maximum at �=c is of particular inter-
est from the nonequilibrium-theory viewpoint. The affinity is
given by �=−4�4�3+3�3�2−2�2�, which leads to
the following cubic equation: ���−b���−c�+� /a=0.
It is possible to algebraically solve this equation.
If A−���A+, then there are three real solutions, whereas
there is only one real solution if ��A+ or ��A−, where
A�= �a /27�� �3�b3+c3�− �b+c�3�2�b2−bc+c2�3/2�. Now,
consider as an example a quadratic correction to equilibrium:
����=�1�+�2�2, where the �’s are positive constants.
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Accordingly, the renormalization factor in Eq. �24� is imme-
diately given by ���� / �D��= ��1+�2�� /D. Then the current
reads F���=�1�dStot��� /d��+�2�dStot��� /d��2. Therefore,
it is a sixth-order polynomial of � in the present example.

IV. CONCLUSION

We have examined the fluctuation theorem by generaliz-
ing the discussion in Ref. �10� to the case of a nonlinear slow
relaxation process for the macroscopic thermodynamic en-
ergy. In this way, a system in a state far from equilibrium is
consistently treated. We have found that the transient fluctua-

tion theorem holds if the entropy change is appropriately
renormalized.
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